
October 2000 The Delphi Magazine 57

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Linking Data Files

QI have a data file which in my
Delphi 1 days I converted to

an object file with that old
BinObj.exe program we all had.
Then I linked the object file into my
program at compile-time, which
worked great. But 32-bit Delphi
won’t let me link my object file,
probably because it was compiled
as a 16-bit object file. How do I get
the desired results with 32-bit
Delphi?

ABinObj.Exe is a simple com-
mand line utility that turns

an arbitrary data file into an .OBJ
(object) file, suitable for linking
into a 16-bit executable. It used to
come with Turbo Pascal and
Borland Pascal With Objects, but
has since slipped into obscurity.
Its purpose is to avoid requiring
external data files by linking the
data directly into the executable (a
bit like a Windows resource, but
less accessible to the outside
world).

BinObj.Exe works fine with
Delphi 1 (a 16-bit development
tool), but not with Delphi 2 and

later, due to the differences
between 16-bit and 32-bit object
files. A quick search on the internet
for the phrase BinObj32 yielded
many references to BinObj32.Zip,
containing BinObj32.Exe, which is
a 32-bit freeware equivalent appli-
cation. BinObj32.Exe is written by
Jan Rekorajski (aka Mr Baggins)
and is advertised as being primar-
ily for Watcom C developers. It also
works fine with 32-bit Delphi. [We
got it from http://ftp.xanet.edu.cn/
pub/tools/converter/ and it’s on the
disk with this issue. Ed]

Let’s see how it works. Firstly we
will need a data file of some
description. What it contains is
irrelevant, but it is important that
the application knows how large
the data block is. How this is
achieved will be dependent on
your application. You could either
hard code it, or store the size as
the first DWord in the data file. If
the data file contains textual
information, you could store the
strings in null-terminated form and
mark the end of the list of strings
with a double null terminator (two
ANSI characters, each having a
value of 0).

As a simple example, the data file
in this case will be a bitmap file.
Fortunately, bitmap files have
information on the size of data in

the file header, so this can be read
to work out the data size.

The following command line
takes the Athena.Bmp bitmap file
(supplied with Delphi) and makes
an object file called Image.Obj:

BinObj32 Athena.Bmp Image.Obj
AthenaImage

The object file contains the data
from the original file and identifies
it with the public symbol _Athena-
Image. Notice the prefixed under-
score which is always added by
BinObj32 (due to the requirements
of Watcom C).

Now we have the data file, we
need to get it linked into the exe-
cutable and then make the data
accessible. This involves two
steps.

Firstly, you link an .OBJ file into
your application with the $L
compiler directive. To make the
data programmatically accessible,
you then declare a dummy proce-
dure with the same name as the
public symbol in the .OBJ file, and
mark it with the external directive.
The linker then matches the
‘procedure’ up with the linked
data.

It doesn’t matter whether the
data represents code or not; in this
case we need to match a proce-
dure declaration with image data.
The point is that an external proce-
dure declaration is the only avail-
able mechanism to access linked
object file content. If the object file
contains data, taking the address
of the ‘procedure’ will give you the
address that the data starts at.

Listing 1, from LinkFile.dpr,
shows the principles, including
the $L directive and the external
procedure declaration. The form’s
OnCreate event handler sets up a
TMemoryStream to point at the image
data and then loads it into a bitmap
managed by a TImage component.

{$L Image.obj} //Link in data file
//Declare symbol that marks start of data in linked data file
procedure _AthenaImage; external;
//Interposer class to access protected methods of TMemoryStream
type
TMemoryStream = class(Classes.TMemoryStream);

procedure TForm1.FormCreate(Sender: TObject);
var
MS: TMemoryStream;
PBMF: PBitmapFileHeader;

begin
MS := TMemoryStream.Create;
try
//Bitmap file header is at start of a bitmap file
PBMF := @_AthenaImage;
//Tell memory stream where the memory is, and how much there is
MS.SetPointer(@_AthenaImage, PBMF^.bfSize);
//Load image data into TImage component
Image1.Picture.Bitmap.LoadFromStream(MS)

finally
MS.Free

end
end;

➤ Listing 1: Linking an image
into an executable as raw
data.

58 The Delphi Magazine Issue 62

However, as is often the case in
programming, it is a little more
complicated than the previous
sentence suggests.

You can see the address of
_AthenaImage being taken and
assigned to a pointer to a TBitmap-
FileHeader record (which repre-
sents the beginning of a bitmap
file). This is done so we can tell
how large the bitmap file data is
(the size is stored in the bfSize
field of the header). The TMemory-
Stream needs to then be told to
represent the memory starting at
the address of _AthenaImage with
the size just found.

TMemoryStream does have a
SetPointermethod which does just
this, but unfortunately it is pro-
tected, so an access class is used to
gain access to it. In fact the type of
class used is sometimes referred to
as an interposer class (see the arti-
cle on the subject by Stephen
Posey in Issue 33).

If you understand the exact defi-
nition of the protected keyword of a
class, then the concept of an
access class will be quite clear. Any
code in the same unit as a class
definition can access that class’s
protected members. So if you
define a new class inherited from
your target class in the unit you are
working in, a simple typecast
opens up the protected section of
such an object to you. An inter-
poser class is used in this case,
where the memory stream is
defined in terms of the new derived
class.

The end result of the code is
shown in Figure 1.

That would be the end of the
matter, but earlier I mentioned you
could do much the same with a
custom resource linked into the

executable. The downside of
this is that various applica-
tions, such as Borland’s
Resource Workshop, and
indeed the Delphi Resource
Explorer demo application,
can see custom resources and
save them back to individual
disk files. If this is not a prob-
lem, then the process is a bit
simpler than linking in an
object file.

The process was covered in
detail in The Delphi Clinic in Issue
32 (Playing Videos), but here is a
quick précis. First you need a
resource script, which is a text file
that identifies the data file, the data
type (an arbitrary name) and a
resource name (another arbitrary
name). An example here would be
a resource script called Image.RC
that contains this single line:

AthenaImage BitmapData
“Athena.bmp”

This says the Athena.bmp file will
be a BitmapData resource (which
means nothing really, as Bitmap-
Data is a made-up word in this
context) called AthenaImage.

The resource script needs to be
turned into a resource file with the
resource compiler, a command
line tool called BRCC32.EXE. Passing
the Image.RC filename to BRCC32
yields the Image.Res resource file,
which can be linked into the
executable with the $R compiler
directive.

So far we have a fairly similar set
of steps (using a command-line
tool to make a file which is linked
with a directive); however, things
are easier from now on. In the pro-
gram you can either use Windows

API calls or a TResourceStream to
access the resource data. Listing 2
shows the new OnCreate handler
(from LinkRes.dpr). The program
running has much the same effect
as in Figure 1.

CPU Window Bafflement

QOccasionally when debug-
ging an application I get

faced with the CPU window. Like
many of my fellow Delphi develop-
ers, I have yet to find out how this
low-level display can be of any use
to me. As someone who has never
programmed in assembly lan-
guage, should I simply ignore the
window?

AOn the contrary, you should
grit your teeth and dive in,

as the CPU window can be very
helpful in many debugging tasks
that can prove tricky without it.
Obviously to get you familiarised
with how you can use it would take
a lot of space, which I don’t have in
this issue. So I would suggest
reading my DCon 2000 paper, De-
bugging With More Than Watches
And Breakpoints (or How To Use
The CPU Window). If you didn’t
attend DCon 2000, you can buy a
copy of the conference CD by call-
ing UK-BUG on +44 (0)1980 630032.

The paper gives a brief overview
of assembly mnemonics and gives
coverage of what the CPU window
shows. It also looks into how to
approach a number of debugging
problems using the CPU window
(and some knowledge that can be
gleaned from browsing through
the System unit source code).

➤ Figure 1: The linked data
shown in a TImage.

{$R Image.res} //Link in resource file
procedure TForm1.FormCreate(Sender: TObject);
var
RS: TResourceStream;

begin
RS := TResourceStream.Create(HInstance, 'AthenaImage', 'BitmapData');
try
//Load image data into TImage component
Image1.Picture.Bitmap.LoadFromStream(RS)

finally
RS.Free

end
end;

➤ Listing 2: Accessing a
custom resource.

October 2000 The Delphi Magazine 59

Array Distinction

QWhat is the difference be-
tween an open array and a

dynamic array? To me, they both
seem to be arrays without a fixed
element count.

ALet’s take a walk down mem-
ory lane and see how both

these language elements came
about. Picture yourself in 1991 with
a copy of Turbo Pascal 6 (or ear-
lier) and think about arrays. This
historic compiler supported
objects and many other useful
features, but it was very limited in
array support.

You could write a subroutine
that took an array as a parameter,
but only if you did it the right way
and with various limitations
imposed. The array type for the
parameter had to be defined in
advance, specifying the number of
elements. Then the formal parame-
ter declaration and the actual
array parameter variable would be
forced to be declared as that exact
type, as shown in Listing 3. Notice
that to avoid writing repetitive
statements to initialise each array
element, a typed constant is used
(discussed in The Delphi Clinic in
Issue 59).

Listing 4 shows some arrays that
are ostensibly the same as the first
array, but which are not accept-
able as parameters due to their
different type definitions. Only
parameters of the argument’s type
(TIntArray) will be accepted by the
routine.

This was inflexible. Being forced
to use a specific array type was bad
enough, but the killer was being
forced to pre-determine how many
elements would be passed.

To help with this restriction,
Turbo Pascal 7 (released in 1992)
relaxed the syntax rules and
introduced open parameter types.
These affected short string and
array parameters. Since we nor-
mally use long strings these days,
we can focus on open array
parameters.

An open array parameter is one
whose type is defined as

array of T

where T is a valid type. The actual
parameter passed in must either
be of type T or be an array variable
whose element type is T. This
allows many different types of
arrays to be passed where an open
array parameter is defined, rather
than being restricted to a very spe-
cific type. This where the openness
in the term open array comes from.

Inside the routine, the formal
parameter operates as if it was
defined as:

array[0..N-1] of T

where N is the number of elements
in the actual parameter. So the
index range of the actual parame-
ter, which could start at any value,
is effectively mapped onto the
integers 0 to N-1. If the actual
parameter was just a variable of
type T, the formal parameter acts
as if it is defined as:

array[0..0] of T

The two standard functions Low
and High can be applied to an open
array parameter and Lowwill return
0 whilst High will return N-1. SizeOf
returns the size of the actual array
parameter in bytes.

The implementation of open
arrays is quite simple. The com-
piler generates code to pass the
address of the first element in the
array as one parameter, followed
by the N value as the next parame-
ter. This gives the routine all it
needs to know about the size of
any open array parameter.

In short, an open array parame-
ter allows many differently sized
arrays of the same element type
to be passed into a general
purpose routine. Listing 4 com-
piles in Turbo Pascal 7 and in
Delphi. However, Delphi added a
couple of extra levels of help
for open array parameters which
were not available in Turbo
Pascal 7.

Firstly, to pass an array to an
open array parameter, Turbo
Pascal 7 required you to have an
array variable to start with. If you
didn’t have one, you had to declare
and initialise one. Delphi allows
you to declare an actual parameter
that can be passed to an open
array parameter on the fly, in situ.
So another valid call to TP6Sum in
Delphi would be:

type
TIntArray = array[1..4] of Integer;

function TP6Sum(var IntArray: TIntArray): Integer;
var
I, Res: Integer;

begin
Res := 0;
for I := 1 to 4 do
Inc(Res, IntArray[I]);

TP6Sum := Res
end;
const
IntArray1: TIntArray = (9, 3, 0, 10);

var
I: Integer;

...
WriteLn(TP6Sum(IntArray1));
ReadLn

➤ Listing 3: A Turbo Pascal 6 array parameter.

type
TIntArray = array[1..4] of Integer;
TAnotherIntArray = array[1..4] of Integer;

...
const
IntArray1: TIntArray = (9, 3, 0, 10);
IntArray2: TAnotherIntArray = (9, 3, 0, 10);
IntArray3: array[1..4] of Integer = (9, 3, 0, 10);

...

WriteLn(TP6Sum(IntArray1)); { Compiles fine, as before }
WriteLn(TP6Sum(IntArray2)); { Type mismatch }
WriteLn(TP6Sum(IntArray3)); { Type mismatch }

➤ Listing 4: Illegal array
parameters in Turbo Pascal 6.

60 The Delphi Magazine Issue 62

TP6Sum([9, 3, 0, 10])

This uses an open array constructor
(rather like a set constructor). This
is a pair of square brackets sur-
rounding a comma-separated list
of values of the appropriate type
and can be used as a shorthand
open array parameter value, avoid-
ing the declaration and initialis-
ation of a variable. These open
array constructors can only be
passed by value or as const param-
eters, not as var parameters. Each
element in the open array con-
structor is an expression of the
array element type, so can be more
interesting than just passing
constant values.

Additionally, Delphi introduced
a special type of open array param-
eter, called a variant open array.
When the formal parameter is
declared as array of const, each
element can be any one of a
number of fixed types: Integer,
Int64, Boolean, Char, WideChar,
floating point, pointer, String,
ShortString, WideString, PChar,
PWideChar, object reference, class
reference, interface reference and
Variant.

The compiler translates an array
of const into an array of TVarRec,
where TVarRec is a variant record
type defined in the System unit (see
Listing 5). The subroutine code can
take an element of the array of
const parameter and typecast it to
a TVarRec record. The code can
then examine the VType byte field,
comparing it with the vtXXXX con-
stants to see which field of the
variant record to access.

This facility is great. It offers the
possibility of writing a type-safe
routine that can take parameter
values of effectively arbitrary
types. Example routines that do
this can be found in The Delphi
Clinic all the way back to Issue 8, in
the Multiple Arguments entry, and
also in Issue 6, in Setting Properties
En Masse.

Hopefully, it is now well under-
stood that an open array is a mech-
anism to allow a subroutine formal
parameter to be more flexible than
it would be in traditional Pascal,
taking arrays of any size, so long as
they have the designated element
type. So now we should turn our
attention to dynamic arrays.

When you declare an array vari-
able using traditional Pascal
syntax, you typically specify the
size in the type declaration. Then,
the compiler can allocate sufficient

memory for each variable that you
use. These arrays can be manipu-
lated and used as you like, possibly
by being passed to subroutines
with open array parameters.

But much like the restriction on
Turbo Pascal array parameters
being forced to be a fixed size, all
Pascal compilers up to and includ-
ing Delphi 3 forced your array vari-
ables to also be fixed size. There
are ways around this, using point-
ers, TList objects and so on, and
these have been covered in Issue
37, in my article Dynamic Arrays.
However, Delphi 4 introduced
formal support for dynamic
arrays.

When you declare a dynamic
array variable, you use syntax
much like that for an open array
parameter, specifying no element
bounds, for example:

var
IntArray: array of Integer;

This sets up an array of integers
with zero elements. The program-
mer can specify how many ele-
ments they want to store in the
array at any later point using the
SetLength procedure, for example:

SetLength(IntArray, 10);

Dynamic arrays operate on the
same basis as dynamic strings
(normal 32-bit Delphi string vari-
ables). SetLength can be used to
extend or shrink the size of the
array, Length returns the number
of elements in it, and the compiler
ensures that the arrays storage
space is tidied away as the array
goes out of scope.

Beware, though, as SizeOf will
return the size of the pointer point-
ing to the dynamically managed
block of memory for the array, and
so will always return 4 when used
against a dynamic array. This
point was explored in Dynamic
Array Question in The Delphi Clinic
in Issue 54

Another gotcha waiting in the
wings occurs when you try and
implement a subroutine with a
parameter that you want to repre-
sent a dynamic array (as opposed
to any fixed-size array): remember

const
vtInteger = 0;
vtBoolean = 1;
vtChar = 2;
vtExtended = 3;
vtString = 4;
vtPointer = 5;
vtPChar = 6;
vtObject = 7;
vtClass = 8;
vtWideChar = 9;
vtPWideChar = 10;
vtAnsiString = 11;
vtCurrency = 12;
vtVariant = 13;
vtInterface = 14;
vtWideString = 15;
vtInt64 = 16;

type
PVarRec = ^TVarRec;
TVarRec = record { do not pack this record; it is compiler-generated }
case Byte of
vtInteger: (VInteger: Integer; VType: Byte);
vtBoolean: (VBoolean: Boolean);
vtChar: (VChar: Char);
vtExtended: (VExtended: PExtended);
vtString: (VString: PShortString);
vtPointer: (VPointer: Pointer);
vtPChar: (VPChar: PChar);
vtObject: (VObject: TObject);
vtClass: (VClass: TClass);
vtWideChar: (VWideChar: WideChar); //Added in Delphi 2
vtPWideChar: (VPWideChar: PWideChar); //Added in Delphi 2
vtAnsiString: (VAnsiString: Pointer); //Added in Delphi 2
vtCurrency: (VCurrency: PCurrency); //Added in Delphi 2
vtVariant: (VVariant: PVariant); //Added in Delphi 2
vtInterface: (VInterface: Pointer); //Added in Delphi 3
vtWideString: (VWideString: Pointer); //Added in Delphi 3
vtInt64: (VInt64: PInt64); //Added in Delphi 4

end;

➤ Listing 5: The TVarRec type
responsible for variant open
arrays.

62 The Delphi Magazine Issue 62

to be careful! Since both open
arrays and dynamic arrays use the
array of T syntax, you must tread
carefully.

A routine declared as:

procedure Sum(
Nums: array of Integer);

defines an open array parameter,
not a parameter corresponding to
a dynamic array of integers. To get
a routine that can only take a
dynamic array as a parameter, use
the approach shown in Listing 6.

In summary, an open array is a
flexible formal parameter type,
whilst a dynamic array is a flexible
variable type.

Corrupt Component Palette

QWhen I start Delphi on my
PC, the Component Palette

icons appear corrupted (or some-
times black). How can I fix this?

AThis issue has been preva-
lent over the last couple of

years with various video cards and
has been looked at in The Delphi
Clinic in Issues 31 and 42. The ques-
tion is being covered again as more
information has recently come to
light as to how to remedy the
problem.

Firstly, though, an overview of
information printed previously:
➢ Get the most recent version of

COMCTL32.DLL from Microsoft’s
website and install it.

➢ Verify the problem is video card
or video mode dependent by
testing Delphi after restarting
Windows in safe mode, which
uses standard VGA mode.

➢ Get the latest version of the
video driver from your video
card vendor’s website.

➢ Reduce the graphics hardware
acceleration in Windows 9x in
the System properties dialog.

➢ Ensure you are not trying to run
in Windows 98 on 16 colours (16
colours is not supported,
although 16-bit colours is).

➢ Remove any unnecessary com-
ponent packages, as the more
component images being
managed, the more likely the
problem is to occur.

The new piece of advice relates to
Delphi running on Windows 98 and
can be found in MSDN article
Q218171. It suggests you add a new
entry in SYSTEM.INI. This can be
done in a normal text editor, with
SYSEDIT.EXE, or MSCONFIG.EXE.

In MSCONFIG.EXE, click the
System.Ini tab, click the Display
node, click the + sign next to Dis-
play, click New, type BusThrottle=1
and click OK. Thanks are due to
Tony Hardman for pointing this
new setting out to me at DCon 2000.

Amendments
I have been notified of a number of
things which warrant a new batch
of updates and amendments.

Following on from my articles on
Paradox table corruption in Issues
17 and 42 (also available at www.
TheDelphiMagazine.com on the
Sample Articles page), Bruno
Caprez notified me of something
new. Traditional advice includes
calling the BDE dbiSaveChanges API
in a TTable object’s AfterPost event
handler. Bruno kindly introduced
me to the FlushBuffers method of
TBDEDataSet and descendants
which calls dbiSaveChanges on your
behalf, saving you having to make a
BDE API call.

Terry Jepson wrote to say that
the PageCtl3.pas code from my
Issue 26 (October 1997) article on
customised TPageControl compo-
nents no longer compiles in Delphi
5. This is because Delphi 5 moved
the TOwnerDrawState set type from
the StdCtrls unit to the Windows
unit. It also added several more

possible values to the type, caus-
ing it to now require two bytes
rather than one.

To fix the code, change this
expression from the CNDrawItem
message handling method, which
accesses the low byte:

TOwnerDrawState(
WordRec(Word(ItemState)).Lo)

to this, which accesses the low
word:

TOwnerDrawState(
LongRec(ItemState).Lo)

Thomas Mueller emailed me after
reading the Dual Processor Woes
entry on SMP machine issues in
The Delphi Clinic column back in
Issue 52. He mentions that the BDE
is not thread-safe on multi-
processor machines and was
forced to make a call to SetProc-
essAffinityMask to keep all the
database threads on one
processor. Thanks for that tip,
Thomas.

I also had an email from Inprise’s
Roy Nelson regarding Issue 58’s
Optimised Working Set entry. He
mentioned that minimising the
working set at arbitrary points in
an application’s run can lead
to page faults and recommends
only calling the appropriate code if
the application is in the back-
ground (as is done by the code in
Listing 7).

type
//Dynamic array type
TDynamicIntegerArray = array of Integer;

//Parameter must be a dynamic array
function Sum(Nums: TDynamicIntegerArray): Integer;
var
I: Integer;

begin
Result := 0;
for I := Low(Nums) to High(Nums) do
Inc(Result, Nums[I])

end;
...
var
//Variable uses same dynamic array type
Array1: TDynamicIntegerArray;
Array2: array[0..1] of Integer;

...
SetLength(Array1, 2);
Array1[0] := 1;
Array1[1] := 10;
ShowMessageFmt('%d', [Sum(Array1)]); //Displays 11
Array2[0] := 1;
Array2[1] := 10;
//ShowMessageFmt('%d', [Sum(Array2)]); //Will not compile

➤ Listing 6: A routine that takes
a dynamic array.

64 The Delphi Magazine Issue 62

An updated version of Issue 58’s
TrimWorkingSet.pas is included
on the disk. Note that you can take
this idea much further, as Roy has
himself, to implement this code in
a background thread rather than in
a timer. You can also add in checks
so that the code only kicks in once
the working set has risen by, say,
25%. Thanks are due to Roy.

Thanks also to Bob Swart who
has some additional news on the
Strings To Numbers entry from
Issue 59. He points out that there is
a SysUtils routine called StrTo-
IntDef which does much the same
job as StrToInt. However, errone-
ous input makes StrToIntDef
return a supplied default value.

There is no equivalent for
floating point numbers, but you
could write one easily, as shown in
Listing 8. Delphi 1 would need the
routine written slightly differently,
as TextToFloat took only two
parameters with that version.

Another point on Issue 59 came
from David Markie, who pointed
out that the code shown in the
Delphi Grammar Problem entry was
lacking a little. The code sets up a
call to CreateProcess and was
based on some code sent into The
Delphi Clinic. Unfortunately, the
code does nothing with the TStart-
upInfo record, SI, before passing it
to CreateProcess. This record
should be set up before the call,
possibly by passing it to the
GetStartupInfo API or possibly by
setting the data fields individually
(as can be seen in Issue 51’s Clinic
in the CreateProcess Alert entry).

Gerry Haynaly also pointed out
that my commented piece of code
in Listing 10 from the same entry in
Issue 59 was missing a pair of
parentheses. In other words, what
was printed as:

while not WaitForSingleObject(
PI.hThread, 40000) in
[WAIT_OBJECT_0,WAIT_TIMEOUT]
do

should have looked like:

while not (WaitForSingleObject(
PI.hThread, 40000) in
[WAIT_OBJECT_0,WAIT_TIMEOUT])
do

(note the extra parentheses).
Thanks David and Gerry for
cleaning up after me there J.

Also in Issue 59, I mentioned the
location of a beta update to the
InterBase Express components.
Thanks are due to Wyatt Wong who
tells me that the finished IBX
update 4.2 for Delphi 5 and
C++Builder 5 can now be
downloaded from

www.interbase.com/open/
downloads/IBX_updates.html

One final update is to something
I said in one of my talks (IDE/
RTL/VCL/ObjectPascal Tips, at this
year’s DCon 2000 conference) . As
the talk drew to a close, someone
asked for a recommended way to
initialise an array of data entities,
for example strings, an operation
that may be needed several times
in a given subroutine.

My impulse reaction was to
answer the question of initialising
an array and focused on that. I
mentioned that strings are repre-
sented by pointers, so an array of
strings would be an array of 32-bit
entities. You could use

FillChar(TheArray,
SizeOf(TheArray), 0)

to set each string to a nil pointer,

representing an empty string. By
the way, SizeOf will work for a
normal array, but not a dynamic
array (see Dynamic Array Question
in The Delphi Clinic, Issue 54).

Of course at the time I com-
pletely forgot that long string
variables are auto-managed by
compiler-generated code which
endeavours to free up any memory
that has been allocated for a string.
Splatting a nil over the real
pointer value loses the original
string causing heap leaks. The cor-
rect way to re-initialise any array of
strings is:

for I := Low(TheArray) to
High(TheArray) do
TheArray[I] := ‘’;

or:

for I := Low(TheArray) to
High(TheArray) do
SetLength(TheArray[I], 0);

Don’t forget that local long strings,
be they in an array or not, will
automatically be initialised as
empty strings, just as dynamic
arrays are initialised as zero-sized
arrays.

procedure TForm1.Timer1Timer(Sender: TObject);
var
CurrentPID, FocusedPID: THandle;

begin
CurrentPID := GetCurrentProcessId;
GetWindowThreadProcessId(GetForegroundWindow, @FocusedPID);
if (Win32Platform = VER_PLATFORM_WIN32_NT) and (CurrentPID <> FocusedPID) then
SetProcessWorkingSetSize(CurrentPID, Cardinal(-1), Cardinal(-1));

end;

function StrToFloatDef(const S: String; Default: Extended): Extended;
begin
if not TextToFloat(PChar(S), Result, fvExtended) then
Result := Default

end;

➤ Listing 7: Trimming an application’s working set.

➤ Listing 8: An alternative
error-free string to number
translator.

	Linking Data Files
	CPU Window Bafflement
	Array Distinction
	Corrupt Component Palette
	Amendments

